Victoria S Jiang 1, Charles L Bormann 2
Affiliations Expand
- PMID: 37211062
- DOI: 10.1016/j.fertnstert.2023.05.149
Free article
Abstract
The integration of artificial intelligence (AI) and deep learning algorithms into medical care has been the focus of development over the last decade, particularly in the field of assisted reproductive technologies and in vitro fertilization (IVF). With embryo morphology the cornerstone of clinical decision making for IVF, the field of IVF is highly reliant on visual assessments that can be prone to error and subjectivity and be dependent on the level of training and expertise of the observing embryologist. Implementing AI algorithms into the IVF laboratory allows for reliable, objective, and timely assessments of both clinical parameters and microscopy images. This review discusses the ever-expanding applications of AI algorithms within the IVF embryology laboratory, aiming to discuss the many advances in multiple aspects of the IVF process. We will discuss how AI will improve various processes and procedures such as assessing oocyte quality, sperm selection, fertilization assessment, embryo assessment, ploidy prediction, embryo transfer selection, cell tracking, embryo witnessing, micromanipulation, and quality management. Overall, AI provides great potential and promise to improve not only clinical outcomes but also laboratory efficiency, a key focus because IVF clinical volume continues to increase nationwide.
Keywords: ART; Artificial intelligence; IVF; assisted reproduction; embryology; machine learning; predictive modeling; time-lapse imaging.
Copyright © 2023 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Similar articles
- Artificial intelligence in the embryology laboratory: a review.Dimitriadis I, Zaninovic N, Badiola AC, Bormann CL.Reprod Biomed Online. 2022 Mar;44(3):435-448. doi: 10.1016/j.rbmo.2021.11.003. Epub 2021 Nov 12.PMID: 35027326 Review.
- Development of an artificial intelligence model for predicting the likelihood of human embryo euploidy based on blastocyst images from multiple imaging systems during IVF.Diakiw SM, Hall JMM, VerMilyea MD, Amin J, Aizpurua J, Giardini L, Briones YG, Lim AYX, Dakka MA, Nguyen TV, Perugini D, Perugini M.Hum Reprod. 2022 Jul 30;37(8):1746-1759. doi: 10.1093/humrep/deac131.PMID: 35674312 Free PMC article.
- Artificial intelligence in in-vitro fertilization (IVF): A new era of precision and personalization in fertility treatments.Olawade DB, Teke J, Adeleye KK, Weerasinghe K, Maidoki M, Clement David-Olawade A.J Gynecol Obstet Hum Reprod. 2025 Mar;54(3):102903. doi: 10.1016/j.jogoh.2024.102903. Epub 2024 Dec 27.PMID: 39733809 Review.
- Embryo selection through artificial intelligence versus embryologists: a systematic review.Salih M, Austin C, Warty RR, Tiktin C, Rolnik DL, Momeni M, Rezatofighi H, Reddy S, Smith V, Vollenhoven B, Horta F.Hum Reprod Open. 2023 Aug 15;2023(3):hoad031. doi: 10.1093/hropen/hoad031. eCollection 2023.PMID: 37588797 Free PMC article.
- Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF.VerMilyea M, Hall JMM, Diakiw SM, Johnston A, Nguyen T, Perugini D, Miller A, Picou A, Murphy AP, Perugini M.Hum Reprod. 2020 Apr 28;35(4):770-784. doi: 10.1093/humrep/deaa013.PMID: 32240301 Free PMC article.
Cited by
- Morphometric Blastocyst Assessment: A Retrospective Study Examining the Relationship Between Blastocyst Diameter and Area and Pregnancy Outcomes in Assisted Reproduction Technology Cycles.Sciorio R, Greco PF, Tramontano L, Gullo G, Greco E.J Clin Med. 2025 Apr 19;14(8):2827. doi: 10.3390/jcm14082827.PMID: 40283656 Free PMC article.
- Merging synthetic and real embryo data for advanced AI predictions.Presacan O, Dorobanţiu A, Thambawita V, Riegler MA, Stensen MH, Iliceto M, Aldea AC, Sharma A.Sci Rep. 2025 Mar 21;15(1):9805. doi: 10.1038/s41598-025-94680-0.PMID: 40119109 Free PMC article.
- Micro/Nanorobotics in In Vitro Fertilization: A Paradigm Shift in Assisted Reproductive Technologies.Benhal P.Micromachines (Basel). 2024 Apr 10;15(4):510. doi: 10.3390/mi15040510.PMID: 38675321 Free PMC article. Review.
- [Application of Artificial Intelligence in Sperm Quality Analysis and Sperm Screening].Pang J, Hou W, Nong Y, Bian A, Xu W.Sichuan Da Xue Xue Bao Yi Xue Ban. 2024 Sep 20;55(5):1322-1328. doi: 10.12182/20240960603.PMID: 39507988 Free PMC article. Review. Chinese.
- Assessment and prediction models for the quantitative and qualitative reserve of the ovary using machine learning.Koike H, Harada M, Yoshida K, Noda K, Tsuchida C, Fujiwara T, Kusamoto A, Xu Z, Tanaka T, Sakaguchi N, Kunitomi C, Takahashi N, Urata Y, Sone K, Wada-Hiraike O, Hirota Y, Osuga Y.J Ovarian Res. 2025 Jul 18;18(1):153. doi: 10.1186/s13048-025-01732-0.PMID: 40676609 Free PMC article.
Publication types
MeSH terms
- Animals
- Artificial Intelligence*
- Embryo Transfer / methods
- Fertilization in Vitro / methods
- Male
- Reproductive Techniques, Assisted
- Semen*
LinkOut – more resources
- Full Text Sources
- Medical